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Novel universality classes of coupled driven diffusive systems
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Motivated by the phenomenologies of dynamic roughening of strings in random media and magnetohydro-
dynamics, we examine the universal properties of driven diffusive system with coupled fields. We demonstrate
that cross correlations between the fields lead to amplitude ratios and scaling exponents varying continuously
with the strength of these cross correlations. The implications of these results for experimentally relevant
systems are discussed.
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Recently significant advances have been made in cla
fying the physics of nonequilibrium systems at long time a
length scales into universality classes. It has been shown
standard universality classes in critical dynamics are q
robust to detailed-balance violating perturbations@1#. Novel
features are found only for models with conserved order
rameter and spatially anisotropic noise correlations. In c
trast, truly nonequilibrium dynamic phenomena, who
steady state cannot be described in terms of a Gibbsian
tribution, are found to be rather sensitive to all kinds of p
turbations. Prominent examples are driven diffusive syste
@2# and diffusion-limited reactions@3#. For example, one
finds that for the Kardar-Parisi-Zhang~KPZ! equation aniso-
tropic perturbations are relevant ind.2 spatial dimensions
leading to rich phenomena that include novel universa
classes and the possibility of first-order phase transitions
multicritical behavior@4#.

In this paper we study driven nonequilibrium process
described by a set of dynamic variables whose dynamic
given in terms of coupled Langevin equations. Promin
examples include the dynamic roughening of strings mov
in random media@5#, sedimenting colloidal suspensions@6#
and crystals@7#, and magnetohydrodynamics~MHD! @8#.
Our goal is to investigate and elucidate some of the dram
effects of symmetries of correlation functions on the univ
sal properties of such systems. We focus on models w
two vector fields,u(x,t) andb(x,t), as hydrodynamic vari-
ables. The quantities of interest are the two autocorrela
functions, Ci j

u (x,t)5^ui(x,t)uj (0,0)& and Ci j
b (x,t)

5^bi(x,t)bj (0,0)&, and the cross-correlation functio
Ci j

3(x,t)5^ui(x,t)bj (0,0)&; indicesi , j refer to Cartesian co
ordinates. All these quantities are tensors, whose symm
properties depend on the model under consideration. We
interested in systems with translational and rotational sy
metry, and inversion symmetry such thatu is a polar andb is
an axial vector.

In the first part of the paper, we will consider a on
dimensional Burgers-like model@8# of magnetohydrodynam
ics and itsd-dimensional generalization@10#
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Herel i are coupling constants,n andm are the dissipation
coefficients, andf andg are external stochastic forcing func
tions. These equations are simplified versions of the dyna
cal equations governing the time evolution of the velocityu
and the magnetic fieldb in a magnetized fluid~MHD!. They
are constructed in the same spirit as Burgers equation f
the Navier-Stokes equation. In the second part of the pa
we will discuss the advection of a passive vectorb, where
l15l250. The simplicity of such a model will allow us to
explore higher order correlation functions.

For Langevin equations describing processes relaxing
wards a thermal equilibrium state the correlation functio
for the noise have to obey detailed balance conditions
nonequilibrium models there are no such restrictions. A
minimal requirement one might ask that the noise termf
andg in the Langevin equations obey the same symmet
as the correlation functions for the hydrodynamic field
Since u is a polar vector andb is an axial vector,
^ui(k,t)uj (2k,0)&,^bi(k,t)bj (2k,0)& are real and even in
k, but the cross-correlation functionCi j

3(k,t)5^ui(k,t)bj

(2k,0)& is imaginary and odd ink @8#. Then, assuming
Gaussian distributed conserved noise with zero mean,
noise correlation functions have to be of the following for

^ f i~k,t ! f j~2k,0!&52kikjDu
(0)~k!d~ t !, ~3!

^gi~k,t !gj~2k,0!&52kikjDb
(0)~k!d~ t !, ~4!

^ f i~k,t !gj~2k,0!&52iD i j
3(0)~k!d~ t !, ~5!

where the noise variancesDu,b
(0)(k) are even andDi j

3(0)(k) is
odd in k, respectively. Equations~3! and ~4! are invariant
under inversion, rotation, and exchange ofi with j. We take
the noise cross correlation, Eq.~5!, to be invariant under
inversion, but we allow it to break rotational invariance
symmetry with respect to an interchange of the Cartes
indicesi and j.

We are interested in the physics at long time and len
scales. Then all the correlation functionsC(x,t) are expected
to obey scaling relations of the form
©2004 The American Physical Society01-1
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C~x,t !5x2xC~ t/xz!. ~6!

Since we have two independent fieldsu andb there could in
principle be two different roughness exponentsxu,b . Due to
Galilean invariance, however, none of the nonlinearities
the equations of motion renormalize, and one getsxu5xb
5x522z @8,9#.

Symmetric cross correlations.If both the fields are irrota-
tional, one can introduce two scalar fieldsh andf such that
u5“h and b5“f; note thatf is actually a pseudoscala
Then Eqs.~1! and ~2! become identical to a model of Erta¸
and Kardar@5# describing the dynamic roughening of d
rected lines

]h

]t
1

l1

2
~¹h!21

l2

2
~¹f!25n¹2h1hh , ~7!

]f

]t
1l3~“h!•~“f!5m¹2f1hf , ~8!

wheref5“hh andg5“hf . The cross-correlation function
Di j

3(0) is now symmetric in the tensor indices an
^h(k,0)f(2k,0)& is imaginary and odd ink. If, in addition,
we require rotational invariance, the cross-correlation fu
tion would vanish. This is the case considered in Ref.@5#.
For a truly nonequilibrium model there is, however,
physical principle which would exclude a finite cros
correlation terma priori. Hence we allow for a nonzero
^hh(k,0)hf(2k,0)&, which then explicitly breaks rotationa
invariance, and explore its consequences for the dynam

We have determined the roughness exponentx and the
dynamic exponentz employing a lowest order self-consiste
mode-coupling scheme and a one-loop dynamic renorma
tion group calculation. Perturbation theory is formulated
terms of the response and correlation functions for the fie
h and f. They are conveniently written in terms of sel
energies S(k,v) and generalized kinetic coefficien
D(k,v). For simplicity we assume thatn5m; in MHD this
would correspond to a system with magnetic Prandtl num
Pm5m/n51. Then there is only one response function a
it can be written asGh,f

21 (k,v)5 iv2S(k,v). Then, corre-
lation functions are of the form, Ca(k,v)
52Da(k,v)uG(k,v)u2 for a5h,f and C3(k,v)
52iD 3(k,v)uG(k,v)u2 for the cross-correlation function
In diagrammatic language lowest order mode-coupl
theory is equivalent to a self-consistent one loop theory. T
ensuing coupled set of integral equations is compatible w
the scaling form Eq.~6!. In Fourier space the scaling form
reads for the self-energy,S(k,v)5Gkzs(v/kz), and for
the generalized kinetic coefficients Dh(k,v)
5Dhk2d22xdh(v/kz), Df(k,v)5Dfk2d22xdf(v/kz),
D3(k,v)5sgn(k)D3k2d22xd3(v/kz). To solve this set of
coupled integral equations we employ a smallx expansion
@11#. This requires matching of the self-energies and corre
tion functions atv50. With the zero-frequency expression
S(k,0)5Gkz, Dh(k,0)5Dhk22x2d, Df(k,0)5Dfk22x2d,
one finds for the one-loop self-energy~we takel15l25l3
5l without any loss of generality!
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Dhl2
5

Sd

~2p!d

1

2d S 11
Df

Dh
D , ~9!

and for the one-loop correlation functions,

G2

Dhl2
5

1

4

Sd

~2p!d

1

d2213x F11S Df

Dh
D 2

12S D3

Dh
D 2G ,

G2

Dfl2
5

1

2

Sd

~2p!d

1

d2213x F Dh

Df
2S D3

Df
D 2G . ~10!

HereSd is the surface of ad-dimensional unit sphere. From
Eqs.~10! we find

S Df

Dh
D 2

12NS Dh

Df
11D2150, ~11!

whereN[(D3 /Dh)2 defines an amplitude ratio. In the Eq
~11!, the domain ofN is determined by the range of rea
values forDf /Dh starting from 1~for N50). Thus for small
N we can expand around 0 and look for solutions of the fo
Df /Dh511aN, such that forN50 we recoverDh5Df
~the result of Ref.@5#!. We obtaina522, i.e.,

Df /Dh5122N, ~12!

implying that within this approximate calculationN cannot
exceed 1/2, i.e.,D3<Dh/2. An important consequence o
this calculation is that the amplitude ratioDf /Dh is no
longer fixed to 1 but can vary continuously with the streng
of the noise cross-correlation amplitudeD3 . These results
are confirmed by a one-loop renormalization group~RG! for
the strong coupling fixed point ind51. In addition, Eq.~12!
is valid at the roughening transitions to lowest order in ad
521e expansion.

In contrast, the scaling exponentsx andz are not affected
by the presence of cross correlations. We getx5 1

2 and z
5 3

2 in d51 dimensions,x52O(e)2 and z521O(e)2 at
the roughening transitions in ad521e expansion, andx
522(d/2) andz5 4

3 1(d/6) for the strong coupling phase
Note that the values for the strong coupling exponents
obtained within Bhattacharjee’s@11# small-x expansion, as
described above. There is still an ongoing debate whe
those values for the exponents actually correspond to
KPZ strong coupling case~see Ref.@12# for a discussion!.

We have verified our analytical results ind51 by numeri-
cal simulations of both a coupled lattice model with cro
correlations, and direct numerical simulations of the mo
Eqs. ~1! and ~2!. Our numerical results explicitly demon
strate the dependence of the amplitude ratio on the cr
correlation function amplitude. Details will be publishe
elsewhere@13#.

Antisymmetric cross correlations.In the preceding para
graph we have restricted ourselves to irrotational fields
the vector fieldsa5u,b have the forma5“3Va1“Sa ,
with vectorsVa being cross correlated but scalarsSa uncor-
related then the varianceDi j

3 satisfiesDi j
3(k)52Di j

3(2k)
5D ji

3(2k)52@Di j
3(k)#* . This is the antisymmetric part o

the cross correlations. The noise strengthD̃3 is defined by
1-2
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Di j
3(k)D ji

3(2k)5D̃3
2 k4. In the scaling limit, the self-

energy readsS(k,v)5Gkzs(v/kz), the correlation func-
tions are Ci j

u (k,v)5kikjDuk2d22xdu(v/kz), Ci j
b (k,v)

5kikjDbk2d22xdb(v/kz), and the antisymmetric part o
the cross correlation function reads Ci j

a (k,v)
5Di j

a (k)k22x2z2d.
Following methods used for the symmetric cross corre

tions, we obtain the analogues of Eqs.~9! and ~10!

G2

Dul2
5

Sd

~2p!d

1

2d S 11
Db

Du
D , ~13!

G2

Dul2
5

1

4

Sd

~2p!d

1

d2213x
F11S Db

Du
D 2

12S D̃3

Du
D 2G ,

G2

Dbl2
5

1

2

Sd

~2p!d

1

d2213x
FDu

Db
1S D̃3

Db
D 2G . ~14!

Equations~13! and~14! give Du /Db51 at the fixed point
for arbitrary values ofÑ5(D̃3 /Dh)2. Hence no restrictions
on Ñ arises from that. In contrast to the effects of the sy
metric cross correlations, the exponents now depend con
ously onÑ. To leading order, we get

x5
2

3
2

d

6
1

Ñd

6
, z5

4

3
1

d

6
2

Ñd

6
. ~15!

These exponents presumably describe the rough phase a
d.2, with the same caveats as above@12#. With increasing
D̃3 the exponentx also grows~andz decreases!. Obviously
this cannot happen indefinitely. We estimate the upper li
of Ñ in the following way: Note that the Eqs.~1! and ~2!
along with the prescribed noise correlations~i.e., equiva-
lently the dynamic generating functional! are of conservation
law form, i.e., they vanish ask→0. Thus there is no infor-
mation of any infrared cutoff in the dynamic generati
functional. Moreover, we know the solutions of the equatio
exactlyif we drop the nonlinear terms~and hence, the expo
nents:x512d/2,z52). Hence physically relevant quant
ties like the total kinetic and magnetic energie
*k^u(k,t)u(2k,t)& and*k^b(k,t)b(2k,t)&, remainfinite as
the system size diverges, and are thus independent o
system size. Since the nonlinear terms are of the conse
tion law form, inclusion of themcannotbring a system size
dependence on the values of the total kinetic and magn
energies. However, ifx continues to increase withD̃3 at
some stage these energies would start to depend on the
tem size which is unphysical@14#. So we have to restrictÑ to
values smaller than the maximum value for which these
ergy integrals are just system size independent: This g
Ñmax5(2/d)(d/211). Note that the limits onN and Ñ im-
pose consistency conditions on the amplitudes of the m
sured correlation functions but not on the bare noise corr
tors.
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Antisymmetric cross correlations stabilize the short-ran
fixed point with respect to perturbations by long-range no
with correlations}k2y,y.0. This can easily be seen; i
presence of noise correlations sufficiently singular in the
frared limit, i.e., large enoughy, the dynamic exponent is
exactly given by @12,15# zlr5(21d/3)2(y/3). The short-
range fixed point remains stable as long aszsr,zlr which
givesy,221(11Ñ)d/2. Hence we conclude that in pres
ence of antisymmetric cross-correlations long-range no
must bemore singularfor the short-range noise fixed poin
to lose its stability or in other words, antisymmetric cro
correlations increases the stability of the short-range no
fixed point with respect to perturbations from long-ran
noises.

We have seen that the amplitudes of the cross-correla
function play a quite crucial role in determining the lon
wavelength properties of the system. In our analysis we u
only short-range noise, which is enough to elucidate the
sic points. However, a Langevin description of many syste
often requires a noise term with correlations becoming s
gular in the long wavelength limit, such as fully develop
MHD @8#. These systems are typically characterized by a
of anomalous exponents for higher order correlation fu
tions. Below we give an illustrative example to highlight th
effects of symmetries on the anomalous scaling exponen
higher order correlation functions in the passive vector lim
where the velocity fieldu is assumed to obey a Gaussia
distribution @instead of Eq.~1!# with a variancê ui(k,t)uj
3(2k,0)&5@2Dd(t)/(k21M2)d/21e/2#@aPi j 1Qi j # where
0<e<2, which makes the model analytically tractable. A
before, the magnetic fieldb is governed by Eq.~2!. The
tensor Pi j is the transverse projection operator,Qi j is the
longitudinal projection operator. The parametera.0 deter-
mines the extent of incompressibility of theu field. Thus in
this problema appears as a tuning parameter in the mu
plicative noise, very much likeN and Ñ appeared in our
previous results. By following a field-theoretic dynam
renormalization group procedure in conjunction with ope
tor product expansion@16#, we calculate the scaling expo
nents of the structure functionsSn(r )5^@u(x1r )
2u(x)#2n&;r zn,b5“ u. Within a one-loop approximation
we find

zn52n2
ned

da112a Fa1
12a

d
12~n21!H a

d

1
3~12a!

d~d12! J G . ~16!

This clearly demonstrates that even for the linear probl
there is an continuous dependence of the scaling expon
on the parametera, characterizing the extent to which th
velocity field is compressible. We expect this to hold also
the nonlinear problem, whose analysis is significantly m
complicated.

Let us now review our results in the context of som
physically relevant systems. Our results are relevant fo
wide class of nonequilibrium systems. In MHD turbulen
1-3
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the cross-correlation function̂ui(k,t)bj (Àk,t)& is, in gen-
eral, nonzero@17#, and as before, is odd and imaginary ink.
Similar calculations as here for MHD show that two dime
sionless numbers, the magnetic Prandtl number Pm and the
ratio of the magnetic to the kinetic energy, are nonuniver
they are functions of both the symmetric and antisymme
part of the cross-correlation amplitudes. Another system
interest is the dynamics of a drifting polymer through a s
lution @18#. Here the hydrodynamic degrees of freedom
the transverse and longitudinal displacements with respe
the mean position. Dynamic light scattering experiments
be performed to investigate the effects of cross correlati
discussed here. Our results are significant also for cou
growth of nonequilibrium surfaces@20#, and sedimenting lat-
tices @7,21#.

In summary, we have demonstrated that cross correlat
between two vector fields can drastically alter th
asymptotic statics and dynamics at long length and t
scales. The symmetric and antisymmetric part of the no
cross-correlation function have different effects. The sy
metric part leaves the scaling exponents unaffected but yi
amplitude ratios of the various correlation functions, whi
continuously depend on the amplitude of the noise cross
relation @see Eq. ~12!#. In contrast, the asymmetric pa
.
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leaves the amplitude ratios unaffected, but leads to cont
ously varying exponents@see Eq.~15!#. In both cases the
continuous variation with the noise amplitude of the cro
correlations is not arbitrary but constrained by scaling re
tions @see Eqs.~12! and ~15!#, a feature, present also in ou
results on the multiplicative noise driven linear system. W
have shown this using renormalization group methods
mode-coupling theory, confirmed by some preliminary sim
lations@13#. Recently, Drossel and Kardar@19# have studied
a set of coupled Langevin equations describing the interp
between phase ordering dynamics in the bulk and rough
ing dynamics of the interface of binary films. They find
similar continuous variation of the dynamical exponent w
the coupling strength of the bulk and surface fields. Nonp
turbative analysis or numerical simulations may be neces
to resolve the questions about the rough phase more sati
torily. In the light of our results it might also be interesting
examine the effects of cross correlations on the multisca
properties of MHD in experiments and/or numerical simu
tions.

One of the authors~A.B.! wishes to thank the Alexande
von Humboldt Stiftung, Germany for financial support. W
thank S. Ramaswamy, J. K. Bhattacharjee, and S. M. B
tacharjee for useful discussions.
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